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Abstract

The Minority Game was introduced to show basic properties of competitive systems with
limited common information resources. M. Paczuski and K. E. Bassler introduced a Minority
Game with personal limited information resources, where each agent knows the past actions of
randomly chosen neighbours [M. Paczuski, K.E. Bassler, Self-organized Networks of Competing
Boolean Agents (1999)]. They asked whether such a system can show cooperation. In this paper
we show that agents who are placed in a circle are able to cooperate due to self-organization.
Furthermore, we introduce a new evolution method to optimize the cooperation among the agents.
c© 2000 Elsevier Science B.V. All rights reserved.

In recent science, in particular in the social sciences and economics, there is a
growing interest for systems in which agents with bounded rationality compete for
scarce resources. A model that combines general properties of such systems is the
Minority Game (MG), which was introduced by Challet and Zhang [1].
In this game, a group of N (odd) individuals has to decide for one of two possibili-

ties: 0 or 1. The side chosen by less agents is the winner side, so the maximum number
of winners is (N −1)=2. To make a decision each agent uses a set of s strategies taken
at random from the pool of possible strategies. A strategy contains a set of outputs
which refer to all possible inputs. Furthermore, the agents get a bitstring as input that
contains the last m minority sides and each agent uses the most successful strategy in
order to react on that input. There are altogether 2m input possibilities and therefore
22

m
possible strategies. In the simplest case the agents who decide for the minority side

get a point. Also all the strategies that predict the winner side correctly get a point no
matter if they were actually used or not.
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Now, we suggest another possibility how the agents take up information. We call
this model “Minority Game with local information (MGLI)”. The agents are arranged
on a circle and everyone gets the previous decisions of his neighbours as input (this
is the principle of a cellular automata). For an odd memory m the decisions of the
(m−1)=2 left and right handed neighbours and the own one are known; the asymmetry
for even m is irrelevant. The rest of the procedure is the same: each agent looks at
his more successful strategy how to decide for a side in the next timestep. When all
have decided the minority side is determined, every agent on this side gets a point,
the strategies are valued and the next round begins.
The performance of the system can be described best with the help of the standard

deviation of the number of agents deciding for the minority side, �. The standard de-
viation indicates how well the agents cooperate. The better the agents use the available
resources the smaller it is. To include the number of agents particular emphasis has to
be put on �2=N [2]. When all agents behave randomly (that occurs when the amount
of information is too large) �2=N → 1

4 .
At �rst we analyze the inuence of the number of strategies s on the dynamics of

the MGLI. We found that �2=N increases just slightly with increasing s for di�erent
values of m and N whereas the system behaves randomly for s = 1 since the agents
have no possibility for adaptation.
For our further analysis, we set s = 2 to concentrate on the system parameters m

and N . In Figs. 1 and 2 we plot � as a function of N on a log–log scale for di�erent
values of m. For �xed m nearly all the data fall on a straight line. The slope is approx-
imately 1 for m=1 and 2 and 0.5 for m¿3. Because of this we can generally say that

Fig. 1. � versus N .
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Fig. 2. � versus N .

Fig. 3. �2=N 2 respectively �2=N versus m for N =101, N =501, N =1001 (all points left of the dotted line
represent �2=N 2, all that are right of it represent �2=N ).

� ∼ N for m¡ 3 and � ∼ √
N for m¿3. So in the low-m-region �2=N 2 and in

the high-m-region �2=N is a function only of m. To illustrate this we plot �2=N 2,
respectively �2=N , versus m in Fig. 3 and see that the points fall on a nearly universal
curve. The higher m is the exacter this approximation becomes. What is the cause for
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Fig. 4. �2=N versus m for N = 101, 501 and 1001.

the di�erent scaling of �? We presume that there is a phase transition between m= 2
and 3 since the strategies and therefore the behaviour of the agents is less correlated
for m¿3 than in the low m phase in which the agents often make similar choices as
a result of the correlation. Compared with the MG this herd e�ect is much smaller
because each agent processes a local di�erent input.
A point we have to put more emphasis on is the m = 3 case. In Fig. 4 we scaled

all values with �2=N in order to see that for the MGLI the minimum of � is at m=3
independent of N which is di�erent from the original Minority Game. Reason for this
is the fact that the agents are less correlated (as mentioned above) so the herd e�ect is
harder to obtain. If we increase N the correlation among the agents does not increase
as rapidly as in the MG since the agents in the MGLI process local information.
How could that strongly developed cooperation among agents with memory m=3 be

explained? For this we assigned every agent a random bitstring as input. As a result,
the value of �2=N for m = 3 lies very narrow to the random value. If we generate a
random bitstring with the length N each timestep and every agent takes his input from
that string the value of �2=N for m = 3 is between the original game and that game
with totally randomized input. So we can see that the cooperation in the MGLI must
base on two factors: �rstly there is a connection between the information of the agents
and secondly this information must represent the real decisions of the individuals in
the last timestep. As a result the agents organize themselves with time which helps
them to increase their success signi�cantly. So the self-organization is one of the most
important properties of the system.
Furthermore, we want to discuss the question whether the system can be optimized

by evolutionary mechanisms. The “genetic code” of an agent consists of two genes:
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Fig. 5. Result of the local evolution method for 450 evolution steps (N = 101).

the intelligence m and the number of strategies s. The �rst evolution method works
globally: after n timesteps the worst agent is replaced by a variant of the best one. He
gets the values of m and s of the best agent which can be increased or decreased by
1 with a certain probability (1¡m¡ 10; 1¡s¡ 10). So populations with mixed m
and s are allowed.
Now we suggest another (local) evolution possibility. After n timesteps each agent

looks at his direct neighbour to the right and to the left, if the best neighbour has
at least 1% more points than the agent, he gets the properties of this neighbour as
described above. (To avoid replacement, when the best neighbour has nearly as many
points as the agent, the di�erence must be at least 1%.)
In both methods we set the virtual points of the strategies and the real points of

each player to 0 after an evolution step. Furthermore, we take the standard deviation
as mutation probability so there are less mutations the more the players cooperate.
For our experiment which was carried out for 101 agents we set m = 5 and s = 4

as initial states. The strategy data were chosen randomly at the beginning and were
not changed during evolution. The application of the global evolution method to the
MGLI had no e�ect. The local method had more success (Fig. 5), since it takes into
consideration that the success of an agent depends on his local interaction. Reason for
this is that the memory of most agents decreases to m= 2 and 3 (Fig. 6); we pointed
out that the degree of cooperation is high for these values due to local feedback among
the agents and the self-organization as a consequence. Moreover, most agents use s=2
or 3 strategies (Fig. 7); for these values of s the degree of cooperation is best. So the
system moves towards this state by (local) evolution.
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Fig. 6. Distribution of memory m after 450 evolution steps (N = 101).

Fig. 7. Distribution of s after 450 evolution steps (N = 101).

In conclusion, we presented an adaptive system that describes competitive situations
in which local information is processed. The �rst result is that the best degree of
cooperation is achieved for m=3 independant of the number of players. Secondly, we
have shown that the good system performance bases on self-organization. At last, we
optimized the system with the help of a new evolution method.
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For further reading

The following references are also of interest to the reader: [3–7].
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